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Abstract

When 1-substituted 2a-aroyl-1,2,2a,8b-tetrahydro-3H-benzo[b]cyclobuta[d]pyran-3-ones (1) were treated with dimethylsulfoxonium
methylide, 1-endo isomers (endo-1) gave 1-substituted 3-aroyl-1,2,4a,9b-tetrahydrodibenzofuran-4-ols (2) exclusively as expected. On
the other hand, 1-exo isomers (exo-1) underwent a novel transformation to 1-substituted 2a-(1-arylethenyl)-1,2,2a,7b-tetrahydrocyclo-
buta[b]benzofurans (3), together with 2.
� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1.
Dimethylsulfoxonium methylide is well known as a
reagent for methylene transfer reactions such as methyla-
tion, epoxidation of ketones and aldehydes, and cycloprop-
anation of a,b-unsaturated carbonyl compounds.1 We have
reported an interesting reaction of coumarins having an
electron-withdrawing group at the 3-position with
dimethylsulfoxonium methylide2 and a stereoconvergent
transformation reaction of 1,2a-disubstituted benzo[b]-
cyclobuta[d]pyranones (1) with dimethylsulfoxonium
methylide to 1,3-disubstituted tetrahydrodibenzofuranols
(2) regardless of the stereochemistry of the 1-substituent
group in 1 (Scheme 1).3
0040-4039/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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In a continuation of the latter study, we noted that only
the 2a-benzoyl derivative (1a) gave a small amount of a
by-product (3a) together with 2a (Scheme 2). In this Letter,
we describe a novel transformation of 1-substituted 2a-
aroylbenzo[b]cyclobuta[d]pyranones (1) with dimethylsulf-
oxonium methylide to 2a-(1-arylethenyl)-1,2,2a,7b-tetra-
hydrocyclobuta[b]benzofurans (3).

The molecular formula of the by-product (3a) was found
to be C24H20O on the basis of high-resolution MS and
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elemental analysis, and the structure of 3a was confirmed
as 1-phenyl-2a-(1-phenylethenyl)-1,2,2a,7b-tetrahydrocy-
clobuta[b]benzofuran on the basis of NMR spectral data
including detailed analysis of the heteronuclear multiple
quantum coherence (HMQC) and heteronuclear multiple
bond coherence (HMBC) spectra (Fig. 1).4 In nuclear
Overhauser enhancement and exchange spectroscopy
(NOESY) spectra of 3a, an NOE was observed between
the terminal olefinic proton Ha and C7b–H, but not
between Ha and C1–H. Therefore, the stereochemistry of
3a should be as that shown in Figure 1.

Judging from the stereochemistry of 3a, we hypothesized
that 3a was derived from exo-1a. To verify this assumption,
the diastereomeric isomers (exo-1a and endo-1a) were sep-
arated using medium-pressure liquid chromatography
(MPLC) and their stereochemistries were confirmed on
the basis of 1H NMR spectra.5 Each of exo- and endo-1a

was treated with 2 equiv of sulfoxonium methylide. Endo-
1a gave only 2a in 70% yield.3b,c On the other hand, exo-
1a gave a mixture of 2a and 3a in 14% and 30% yields,
respectively (Scheme 3). Several reaction conditions were
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Fig. 1. Structure and selected HMBC and NOESY correlations in 3a.
examined to optimize the yield of 3a, improving it to
51% by treating exo-1a with 2 equiv of sulfoxonium methyl-
ide at 0 �C for 2 h then at 80 �C for 8 h (Scheme 3).6 Under
these conditions, 2a0 (the methylated 2a) was isolated after
treatment with methyl iodide and sodium hydride.

Next, the generality of these reactions was examined.
Several cyclobutane compounds (1b–k) were prepared5

and each of the diastereomers (exo-1 and endo-1) was sep-
arated. Each diastereomer was subjected to react with sul-
foxonium methylide. The results are summarized in Tables
1 and 2.

In cases of endo-1b–k, 2b–k were obtained in 40–83%
yields without production of any amount of 3 except for
1i (Table 1). On the other hand, in all cases of exo-1b–k,
Table 1
The reaction of endo-1 and CH2@S(O)Me2

O O

R
H

Ar

O CH2=S(O)Me2 (2 eq.)

DMF, r.t.

endo-1
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H

H

R
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Ar
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Run Starting material Product

Ar R Isolated yield (%)

1 endo-1a: Ph Ph 2a: 70
2 endo-1b: Ph 2-Pyridyl 2b: 60
3 endo-1c: Ph 4-Br–C6H4 2c: 56
4 endo-1d: Ph 4-MeO–C6H4 2d: 83
5 endo-1e: Ph n-Bu 2e: 74
6 endo-1f: Ph AcOCH2 2f: 68
7 endo-1g: Ph Cyclohexyl 2g: 71
8 endo-1h: 4-F–C6H4 Ph 2h: 66
9 endo-1i: 4-CF3–C6H4 Ph 2i: 68a

10 endo-1j: 4-MeO–C6H4 Ph 2j: 53
11 endo-1k: 3,4,5-(MeO)3–C6H2 Ph 2k: 40

a A corresponding 3i (1-epi-3i) was obtained in 15% yield.



Table 2
The reaction of exo-1 and CH2@S(O)Me2

O O

R

H

Ar
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1) CH2=S(O)Me2 (2 eq.)
     DMF, 0 °C (2 h) 
     then 80 °C (8 h)
     
2) MeI, NaH, r.t.

exo-1

2' + O

H R

Ar
3

Run Starting material Product

Ar R Isolated yielda (%)

1 exo-1a: Ph Ph 2a0: 23 (14) 3a: 51 (30)
2 exo-1b: Ph 2-Pyridyl 2b0: 16 3b: 22
3 exo-1c: Ph 4-Br–C6H4 2c0: 21 3c: 25
4 exo-1d: Ph 4-MeO–C6H4 2d0: 23 (22) 3d: 31 (26)
5 exo-1e: Ph n-Bu 2e0: 34 (23) 3e: 28 (30)
6 exo-1f: Ph AcOCH2 2f0: 18 (16) 3f: 29 (26)
7 exo-1g: Ph Cyclohexyl 2g0: 19 (19) 3g: 37 (33)
8 exo-1h: 4-F–C6H4 Ph 2h0: 10 3h: 26
9 exo-1i: 4-CF3–C6H4 Ph 2i0: 11 (0) 3i: 61 (50)

10 exo-1j: 4-MeO–C6H4 Ph 2j0: 6 (13) 3j: 22 (23)
11 exo-1k: 3,4,5-(MeO)3–C6H2 Ph 2k0: 20 (25) 3k: 24 (26)

a The figure in parentheses is the yield of 2 and 3 when the reaction was performed at rt.
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3b–k were obtained in 22–61% yields together with 2b0–k0

(Table 2).
We propose a plausible reaction mechanism as shown in

Scheme 4. First attack of sulfoxonium methylide to the car-
bonyl carbon of the coumarin ring in exo-1 and endo-1
affords 2 (Route A in Scheme 4).3b,c In exo-1, the methylide
might first attack the carbonyl carbon of the aroyl group to
produce 3 (Route B in Scheme 4). The reactivity toward
nucleophilic attack of the methylide would be higher at
the carbonyl carbon of the coumarin ring than at that of
the aroyl group, and the methylide would attack from con-
vex direction. The conformation of the aroyl group in exo-
1a was similar to that of endo-1a on the basis of their X-ray
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Scheme 4. A plausible reaction mechanism.
analyses,5 and the phenyl ring of their aroyl groups located
over the carbonyl group of the coumarin ring. Since the
aroyl group of endo-1 would be relatively flexible, the
attack of the methylide at the carbonyl carbon of the cou-
marin ring would precede. On the other hand, because the
aroyl group of exo-1 would be rather rigid due of the sub-
stituent group at the 1 position, the attack at the aroyl
carbon would also occur. When the electrophilicity at the
aroyl carbon increased, the yield of 3i rose to 61%
(Run 9 in Table 2). Furthermore, a corresponding 3i

(1-epi-3i) was obtained even in endo-type (endo-1i) (Run 9
in Table 1).7

In conclusion, we have investigated the novel trans-
formation of 1-exo substituted 2a-aroyl-1,2,2a,8b-tetra-
hydro-3H-benzo[b]cyclobuta[d]pyran-3-ones (1) to 1-sub-
stituted 2a-(1-arylethenyl)-1,2,2a,7b-tetrahydrocyclobuta-
[b]benzofurans (3) together with the formation of 1-substi-
tuted 3-aroyl-1,2,4a,9b-tetrahydrodibenzofuran-4-ols (2).
The optimization of the reaction, elucidation of detailed
reaction mechanism, and synthetic application of 3 are
now in progress.
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